August 2022

INCIDENT INTEL REPORTS

Novel Backdoor Discovered

XMRig Technical Analysis: Threat Actor Leverages Confluence Vulnerability to Deploy Novel Backdoor

Part 3

Category: Incident Intel Reports

Headlines: Part 3 XMRig Technical Analysis: Threat Actor Leverages Confluence Vulnerability to Deploy Novel Backdoor

Author: @r1n9w0rm

Overview

Deepwatch has observed threat actors exploiting out-of-date versions of Atlassian Confluence Server and Data Center, leading to the installation of the XMRig crypto-miner.

Vulnerability Details

As detailed in Part 1 of this report, the suspected vulnerability used in this attack was CVE-2022-26134, which affects out-of-date versions of Confluence Server and Data Center, and allows remote code execution (RCE) under the privileges of the user running the service.

Affected Products

For all affected versions and products, see the security advisory published by Atlassian at: <u>https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html</u>

Technical Analysis

XMRig is a legitimate open source cryptocurrency miner for mining the Monero (XMR) cryptocurrency. It is also a popular choice amongst threat actors that use it to mine the cryptocurrency on hijacked systems. After extracting the user account for this particular miner, we have discovered that the Threat Actor(s) who control it may have received more than 652 XMR (worth \$82,176 at this time) in rewards for mining on hijacked systems. We have not found any evidence in this instance that the Threat Actor(s) successfully executed the miner, rather we only found evidence that it was present in an artifact from the system. Within OBJECTS.DATA, we identified a base64 encoded PE file. OBECTS.DATA stores WMI object data and is located on disk at C:\WINDOWS\system32\wbem\Repository\OBJECTS.DATA. Once decoded from base64, we found it is a packed loader that uses process hollowing to execute the XMRig crypto-miner.

01FC9203	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAAAAAAA
01FC9218	41	41	3D	00	00	54	56	71	51	41	41	4D	41	41	41	41	45	41	41	41	41	AA= IVqQAAMAAAAEAAAA
01FC922D	2F	2F	38	41	41	4C	67	41	41	41	41	41	41	41	41	41	51	41	41	41	41	//8AALgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
01FC9242	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAAAAAAAAAAAA
01FC9257	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAAAAAAAAAAAA
01FC926C	41	34	41	41	41	41	41	34	66	75	67	34	41	74	41	6E	4E	49	62	67	42	A4AAAAA4fug4AtAnNIbgB
01FC9281	54	4D	30	68	56	47	68	70	63	79	42	77	63	6D	39	6E	63	6D	46	74	49	TM0hVGhpcyBwcm9ncmFtI
01FC9296	47	4E	68	62	6D	35	76	64	43	42	69	5A	53	42	79	64	57	34	67	61	57	GNhbm5vdCBiZSBydW4gaW
01FC92AB	34	67	52	45	39	54	49	47	31	76	5A	47	55	75	44	51	30	4B	4 A	41	41	4gRE9TIG1vZGUuDQ0KJAA
01FC92C0	41	41	41	41	41	41	41	43	2B	79	4E	54	2F	2B	71	6D	36	72	50	71	70	AAAAAAAC+yNT/+qm6rPqp
01FC92D5	75	71	7A	36	71	62	71	73	6C	64	38	6B	72	50	57	70	75	71	79	56	33	uqz6qbqsld8krPWpuqyV3
01FC92EA	78	43	73	6F	36	6D	36	72	50	50	52	4B	61	7A	35	71	62	71	73	2B	71	xCso6m6rPPRKaz5qbqs+q
01FC92FF	6D	37	72	4B	53	70	75	71	79	56	33	78	47	73	32	61	6D	36	72	4A	58	m7rKSpuqyV3xGs2am6rJX
01FC9314	66	4A	36	7A	37	71	62	71	73	55	6D	6C	6A	61	50	71	70	75	71	77	41	fJ6z7qbqsUmljaPqpuqwA
01FC9329	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	~~~~
01FC933E	41	41	41	41	41	41	41	41	41	42	51	52	51	41	41	54	41	45	46	41	4B	AAAAAAAABQRQAATAEFAK
01FC9353	56	32	68	6C	77	41	41	41	41	41	41	41	41	41	41	4F	41	41	41	67	45	V2hlwAAAAAAAAAAAAAAAAAAAAAAA
01FC9368	4C	41	51	6F	41	41	4A	67	41	41	41	43	49	45	77	41	41	41	41	41	41	LAQoAAJgAAACIEwAAAAAA
01FC937D	35	53	4D	41	41	41	41	51	41	41	41	41	73	41	41	41	41	41	42	41	41	5SMAAAAQAAAAsAAAAABAA
01FC9392	41	41	51	41	41	41	41	41	67	41	41	42	51	41	42	41	41	41	41	41	41	AAQAAAAAgAABQABAAAAAA
01FC93A7	41	46	41	41	45	41	41	41	41	41	41	41	42	77	46	41	41	41	42	41	41	AFAAEAAAAAAABwFAAABAA
01FC93BC	41	4D	74	67	55	41	41	4D	41	41	49	45	41	41	42	41	41	41	42	41	41	AMtgUAAMAAIEAABAAABAA
01FC93D1	41	41	41	41	45	41	41	41	45	41	41	41	41	41	41	41	41	42	41	41	41	ΑΑΑΑΕΑΑΑΕΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
01FC93E6	41	41	41	41	41	41	41	41	41	41	41	41	46	7A	2B	45	77	41	6F	41	41	AAAAAAAAAAAAFz+EwAoAA
01FC93FB	41	41	41	45	41	55	41	4C	51	42	41	41	41	41	41	41	41	41	41	41	41	AAAEAUALQBAAAAAAAAAAAA
01FC9410	41	41	41	41	41	41	41	41	41	41	41	41	41	41	46	41	55	41	4F	77	49	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
01FC9425	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAAAAAAAAAAAA
01FC943A	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	AAAAAAAAAAAAAAAAAAAAAAAAAA
01FC944F	41	41	41	4D	44	35	45	77	42	41	41	41	41	41	41	41	41	41	41	41	41	AAAMD5EwBAAAAAAAAAAAAAA
01FC9464	41	41	41	41	41	73	41	41	41	53	41	45	41	41	41	41	41	41	41	41	41	AAAAAsAAASAEAAAAAAAAA
01FC9479	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
01FC948E	41	41	41	41	43	35	30	5A	58	68	30	41	41	41	41	54	4A	63	41	41	41	AAAAC50ZXh0AAAATJcAAA
01500445	41	= 1	41	41	41	41	en.	41	41	41	41	41	= 1	41	41	41	41	41	41	41	41	*****

Figure 1 - PE within OBJECTS.DATA

Following the main routine, a subroutine makes use of the process hollowing technique on the schtasks (legitimate Windows system utility located at C:\Windows\System32\schtasks.exe), in order to execute XMRig within the virtual address space of schtasks. This technique is documented in the Mitre Att&ck framework as technique ID <u>T1055.012</u>. First the schtasks.exe process is started with the CREATE_SUSPENDED flag as seen below.

mov	[epp+startupinro.nstderror], eax
lea	eax, [ebp+StartupInfo]
push	eax ; lpStartupInfo
push	esi ; lpCurrentDirectory
push	esi ; lpEnvironment
push	4 ; dwCreationFlags -> CREATE_SUSPENDED
push	1 ; bInheritHandles
push	esi ; lpThreadAttributes
push	esi ; lpProcessAttributes
push	[ebp+1pCommandLine] ; 1pCommandLine
mov	[ebp+StartupInfo.dwFlags], 101h
push	esi ; lpApplicationName
call	ds:CreateProcessA
test	eax, eax
jz	short loc_4011AC

Figure 2 - CreateProcessA w/ suspended flag

Next, the Windows API method ZwUnmapViewOfSection is called in order to unmap the existing and legitimate schtask code. This is followed up by a call to the Windows API method VirtualAllocEx to allocate RWE (Read, Write, Execute) memory in the schtasks process.

Figure 3 - ZwUnmapViewOfSection

This is followed by calls to the Windows API method WriteProcessMemory, in order to write the XMRig payload to the RWE memory space. Finally, the Windows API methods SetThreadContext and ResumeThread start the execution of XMRig.

Figure 4 - Write/execute XMRig

When viewing the process list with a tool like task manager, we observed very high CPU usage for schtasks.exe, as seen in the figure below. This is highly suspicious, considering that schtasks is a simple command line utility for listing/creating/deleting scheduled tasks.

CPLLUsage: 100.00%	Physical memory 1 43 GR (71 359	D Processes: 91
on conhost.exe	7936	6.63 MB
schtasks.exe	7872 95.87	7.63 MB
widstybellyie	2000 2000	2.50 1010

Figure 5 - High CPU usage

Upon analyzing the XMRig payload, we can see the user and mining pool URLs in the main subroutine.

mov	[ebp+var_B8],	offset	aStratumTcpXmrE ;	"stratum+tcp://xmr-eul.nanopool.org:1444"
mov	[ebp+var_B4],	offset	aU ; "-u"	
mov	[ebp+var_B0],	offset	a49wzduvq1dfwg3 ;	"49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	[ebp+var_AC],	offset	aP ; "-p"	
mov	<pre>[ebp+var_A8],</pre>	offset	asc_51F918 ; "x"	
mov	<pre>[ebp+var_A4],</pre>	offset	aO_0 ; "-o"	
mov	<pre>[ebp+var_A0],</pre>	offset	aStratumTcpXmrE_0	; "stratum+tcp://xmr-eu2.nanopool.org:1444"
mov	<pre>[ebp+var_9C],</pre>	offset	aU_0 ; "-u"	
mov	[ebp+var_98],	offset	a49wzduvq1dfwg3_0	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	[ebp+var_94],	offset	aP_2 ; "-p"	
mov	[ebp+var_90],	offset	asc_51F9B4 ; "x"	
mov	[ebp+var_8C],	offset	a0_1 ; "-o"	
mov	[ebp+var_88],	offset	aStratumTcpXmrU ;	"stratum+tcp://xmr-us-east1.nanopool.org"
mov	[ebp+var_84],	offset	a0_1 ; "-u"	
mov	<pre>[ebp+var_80],</pre>	offset	a49wzduvq1dfwg3_1	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	<pre>[ebp+var_7C],</pre>	offset	aP_3 ; "-p"	
mov	<pre>[ebp+var_78],</pre>	offset	asc_51FA54 ; "x"	
mov	<pre>[ebp+var_74],</pre>	offset	a0_2 ; "-o"	
mov	<pre>[ebp+var_70],</pre>	offset	aStratumTcpXmrU_0	; "stratum+tcp://xmr-us-west1.nanopool.org"
mov	<pre>[ebp+var_6C],</pre>	offset	aU_2 ; "-u"	
mov	<pre>[ebp+var_68],</pre>	offset	a49wzduvq1dfwg3_2	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	<pre>[ebp+var_64],</pre>	offset	aP_4 ; "-p"	
mov	<pre>[ebp+var_60],</pre>	offset	asc_51FAF4 ; "x"	
mov	<pre>[ebp+var_5C],</pre>	offset	a0_3 ; "-o"	
mov	<pre>[ebp+var_58],</pre>	offset	aStratumTcpXmrA ;	"stratum+tcp://xmr-asial.nanopool.org:14"
mov	<pre>[ebp+var_54],</pre>	offset	aU_3 ; "-u"	
mov	<pre>[ebp+var_50],</pre>	offset	a49wzduvq1dfwg3_3	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	<pre>[ebp+var_4C],</pre>	offset	aP_0 ; "-p"	
mov	<pre>[ebp+var_48],</pre>	offset	asc_51FB90 ; "x"	
mov	<pre>[ebp+var_44],</pre>	offset	aO_4 ; "-o"	
mov	<pre>[ebp+var_40],</pre>	offset	aStratumTcpPool ;	"stratum+tcp://pool.supportxmr.com:80"
mov	<pre>[ebp+var_3C],</pre>	offset	aU_4 ; "-u"	
mov	[ebp+var_38],	offset	a49wzduvq1dfwg3_4	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	[ebp+var_34],	offset	aP_1 ; "-p"	
mov	[ebp+var_30],	offset	asc_51FC28 ; "x"	
mov	[ebp+var_2C],	offset	a0_5 ; "-o"	
mov	<pre>[ebp+var_28],</pre>	offset	aStratumTcpMine ;	"stratum+tcp://mine.xmrpool.net:80"
mov	[ebp+var_24],	offset	aU_5 ; "-u"	
mov	[ebp+var_20],	offset	a49wzduvq1dfwg3_5	; "49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA"
mov	[ebp+var_1C],	offset	aP_5 ; "-p"	
mov	[ebp+var_18],	offset	asc_51FCBC ; "x"	
mov	[ebp+var_14],	offset	aK ; "-k"	
mov	[ebp+var_DC],	eax		

Figure 6 - XMRig config

The configuration is as follows:

- 1. Monero address (user): 49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UAiYzc2WmGbN7yFDmmc2GZzrAv6GkY24 hR7imhNaWME9wEKWPGF3h2FXQB
- 2. Mining pools:
 - a. nanopool.org
 - b. supportxmr.com
 - c. xmrpool.net

With this Monero user, we performed a search across the aforementioned mining pools, and found the Threat Actors who control it have received, in total, at least 652 XMR (worth \$82,176 at this time) in rewards for mining on hijacked systems. The first transaction we can see for this user dates back a few years.

Figure 7 - XMR payout for nanopool.org

SUPPORT	¢ XMR		
1.5 GHIS 753.6 MHIN	• • • • • •	•	
8 Hrs Ago	49WZduVQ1DFWG3scZxFT8hBY1JsoYuJVqMRe8UA 0.26178861 XMR Pending	iYzc2WmGbN7yFDmmc2GZzrAv6GkY24hR7imhNaWME9w	ÆKWPGF3h2FXQB
50 KH/S 37.5 KH/S 25 KH/S 12.5 KH/S 0		30.9 KH	is Aug 8 His
	1 Worker	2,509,298,406,223	32,3
	dx	37.7 KH/s	

Figure 8 - supportxmr.com payout

Conclusion

In this post we explored the inner-workings of a commonly abused crypto-miner, found installed on a system in which we suspect was exploited through a Confluence Server / Data Center vulnerability. It is our hope that this post informed you of attack techniques and procedures to be on the lookout for.

Observables

Note:

Observables are properties (such as an IP address, MD5 hash, or the value of a registry key) or measurable events (such as the creation of a registry key or a user) and are not indicators of compromise. The observables listed below are intended to provide contextual information only. Deepwatch evaluates the observables and applies those it deems appropriate to our detections.

Observing sets of these properties (observables) could be an indicator of compromise. For instance, observing an IP address, creation of a user with admin privileges and a registry key could be indicators of compromise and should be investigated further.

Observables	
Description	Value
Primary mining pool	nanopool.org
Alt mining pool	supportxmr.com
Alt mining pool	xmrpool.net
XMRig unpacked	c95c70b3f884759a968b339787374910ffc8e396b47aafef71ab4f35 9ee28873
XMRig loader	bdb3c52c9494f5cb79d83fb979c74a08c0c1937e2a949e3bc8d79d5 b1994975e