@» deepwatch August 2022

INCIDENT INTEL REPORTS

Novel
Backdoor
Discovered

SIS

ljl Backdoor Technical E AN i ? Vi
Analysis: Threat Actor = I | il
Leverages Confluence T e Eiij Ha 00 ()
Vulnerability to Deploy Novel AW | % m‘ L 1B o A TR _

Part 2 /ﬁ : '; L jf

Category: Incident Intel Reports

Headline: Part 2 |jl Backdoor Technical Analysis: Threat Actor Leverages Confluence
Vulnerability to Deploy Novel Backdoor

Author: @r1n9w0rm

Overview

Deepwatch has observed threat actors exploiting out-of-date versions of Atlassian Confluence Server and
Data Center, leading to the execution of arbitrary code. In this post, we provide the technical details of a
never-before-seen backdoor that was identified by a Deepwatch MDR Threat Hunter and dubbed “ljI
Backdoor”.

Vulnerability Details
As detailed in Part 1 of this report, the suspected vulnerability used in this attack was CVE-2022-26134,

which affects out-of-date versions of Confluence Server and Data Center, and allows remote code
execution (RCE) under the privileges of the user running the service.

Affected Products

For all affected versions and products, see the security advisory published by Atlassian at:
h X nfluence.atlassian.com nfluence- rity-advisory-2022-06-02-1130377146.htm|

Technical Analysis

In this post, we will go over the technical analysis of a backdoor we identified post-exploitation. We have
dubbed it “ljl Backdoor”, as we suspect it is never-before-seen and includes capabilities such as:

Reverse proxy

Query whether the victim is active oridle

Exfiltrate files/directories

Load arbitrary and remotely downloaded .NET assemblies as “plugins”

Get user accounts

Get the foreground window and window text

Get victim system information, such as: cpu name, gpu name, hardware id, bios manufacturer,
mainboard name, total physical memory, LAN IP address, and mac address

e Get victim geographic information, such as: asn, isp, country name, country code, region name,
region code, city, postal code, continent name, continent code, latitude, longitude, metro_code,
timezone, and datetime

https://twitter.com/r1n9w0rm
https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

Loader

The loader is composed of three binaries: wab.exe, wab32.dll, and wab32res.dll. All files are installed in the
hard-coded path C:\Program Files\Common Files\Securitys.

1. wab.exe: Runs as a Windows Service named wscsves to masquerade as the legitimate
Windows service wscsve and loads wab32.dll. This file was packed with .NET Reactor.

2. wab32.dll: Loads/executes wab32res.dll

3. wab32res.dll: Loads backdoor/watchdog.

The following behavior is exhibited by the Loader:

1. Ensures Windows Defender is completely disabled, both via registry keys and via PowerShell
commands:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Defender\Features
TamperProtection = 0

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time
Protection

DisableBehaviorMonitoring = 1
DisableOnAccessProtection = 1
DisableScanOnRealtimeEnable = 1

"powershell" Get-MpPreference -verbose

"powershell" Set-MpPreference -DisableArchiveScanning $true

"powershell" Set-MpPreference -DisableBlockAtFirstSeen $true
"powershell" Set-MpPreference -DisablelOAVProtection $true

"powershell" Set-MpPreference -DisablePrivacyMode $true

"powershell" Set-MpPreference -DisableRealtimeMonitoring $true
“powershell" Set-MpPreference -DisableScriptScanning $true

"powershell" Set-MpPreference -HighThreatDefaultAction 6 -Force
"powershell" Set-MpPreference -LowThreatDefaultAction 6

"powershell" Set-MpPreference -Moderate ThreatDefaultAction 6
"powershell" Set-MpPreference -SevereThreatDefaultAction 6

"powershell" Set-MpPreference -SignatureDisableUpdateOnStartupWithoutEngine $true
"powershell" Set-MpPreference -SubmitSamplesConsent 2

"powershell" Add-MpPreference -ExclusionPath
'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\WPF\'

"powershell" Add-MpPreference -ExclusionPath 'C:\Program Files\Common
Files\Securitys'

"powershell" Add-MpPreference -ExclusionPath

'C:\Windows\Microsoft. NET\Framework\v4.0.30319\WPF\’

2. Detects the presence of a debugger to hinder malware analysts:

3. Startsiexplore.exe for the purpose of writing/executing shellcode that loads the LjlClient payload:

a.

b.

Calls CreateProcessW to start iexplore with command line: "C:\Program Files\Internet
Exploren\iexplore.exe" -nohome

Calls VirtualAllocEx to allocate RWE memory in the virtual address space of the previously
started iexplore process.

Decrypts shellcode and calls WriteProcessMemory to write the shellcode to the previously
allocated memory.

Calls CreateRemoteThread to execute the shellcode.

4, Starts msiexec.exe for the purpose of writing/executing shellcode that loads Watchdog payload:

a.

b.

Shellcode

Calls CreateProcessW to start iexplore with command line:
"C:\Windows\System32\msiexec.exe" /qn /quiet

Calls VirtualAllocEx to allocate RWE memory in the virtual address space of the previously
started msiexec process.

Decrypts shellcode and calls WriteProcessMemory to write the shellcode to the previously
allocated memory.

Calls CreateRemoteThread to execute the shellcode.

The shellcode used within the loader was generated by the threat actor using the open source tool Donut.
According to the authors of this project, “Donut is a position-independent code that enables in-memory
execution of VBScript, JScript, EXE, DLL files and dotNET assemblies.” In this case, it is used to execute
dotNET (.NET) assemblies. It was interesting to us, as it not only loads/executes the backdoor and
watchdog, but also attempts to thwart AV/EDR by patching functions exported by the AMSI (Anti-malware
Scan Interface) and WLDP (Windows Secure Mode Policy) libraries.

Dynamically Resolved Imports

The shellcode dynamically resolves the following exports.

e kernel32.dll

(e]

GetProcAddress, GetModuleHandleA, VirtualAlloc, VirtualFree, VirtualQuery;,
VirtualProtect, Sleep, MultiByteToWideChar, GetUserDefaultLCID

e oleaut32.dll

(e]

SafeArrayCreate, SafeArrayCreateVector, SafeArrayPutElement, SafeArrayDestroy;,

https://github.com/TheWover/donut

SafeArrayGetLBound, SafeArrayGetUBound, SysAllocString, SysFreeString

e wininit.dll
o InternetCrackUrlA, InternetOpenA, InternetConnectA, InternetSetOptionA,

InternetReadFile, InternetCloseHandle, HttpOpenRequestA, HttpSendRequestA,
HttpQuerylnfoA

e mscoree.dll
o CorBindToRuntime, CLRCreatelnstance

e combase.dll
o ColnitializeEx, CoCreatelnstance, CoUninitialize

Disabling AMSI

1. Firstthe Windows API LoadLibraryA("AMSI") is called to acquire a handle to amsi.dll.

2. Ifthisis successful, the handle is then used with the Windows API GetProcAddress, e.g.
GetProcAddress(hAMSI, "AmsiScanBuffer") to acquire the address of the function.

3. The Windows API VirtualProtect is called to make the memory of the address to AmsiScanBuffer

PAGE_EXECUTE_READWRITE.

feall geeed pin [shaidon] | LesdLibrasyh(i)
e wdi, pas
hest e, res
short lec_ LAFFS07IEC
T 1
L |
_LAFRIOTIER |
rin, [Ebasdkon)
rem. pdi
11 gwerd phe [rbaéd8h] | OetPreckddesss (RAMET, “AmsiSeasBuffer)

Pl PaE

TN, TEE
low_LAF9S07 AR

wbp. som

Y, [EEpidaniarg_0]

willn, wen o dwilins (1} bytes)

rill, 40k] 1 FlRswProtesst [

roN, TaN i dphddress [AmsiBoanBuffer)
qeard pir [rhEsE0h] ; VirtuslProtest

Disable AMSI Graph

] lﬂ
thd, by | 13 bytes
s, Eld | EEe
roN, Fel | dest | phmslSoanBuffer)
wub_IAFISOTRARDN |
whd, |rapsdBhiarg 0] .
¥, |eapdidhiarg_B]
i, by
ron, rek
PLE [FBEsdon] ;| VirteaiFrotect
s, | R ¥BCH)
ren, pill
quord ptr [rbadiih] ;| GetProokddress (hANST, ~kesiBosndtrisg”)
Fml, Fam
R, Fas
ahort lec_LAF¥S0TIFSE
I 1
L |
-
PEN, wub_LAFRSOTIEST
rhp. sub_LAFSSOTIRAR
won, =bp
3= shart lec LAF3307)F3E
l_‘_'_
wdl. sem
s ¥, [eepédiniarg_0]
wdn, som | deligs (1D Bytes)
v, 408 ; 8" flMewProtact | ITE}
reN;, ram : phmsiScanftring
qeerd pLE [FbEE0h] | YirtsalFrolset
EAH, BAE
kL short leo_LAF¥S0TIFIE
|
L |
rikd, wdi
rdn, rbp
FEE, Fal o dest | phselBEanlE L)
wal_LIAFFSOTRREN |
i, |npul'hﬂr'_M
€9, [repidinhiarg]
wdlE, ®di
ren; rel
rﬂmr [rbm+80h] | VirtuslProtsot
o S0TIEAR

Dl e |

4. The replacement code for the AmsiScanBuffer function is seen in the figure below.

QO0001IAFIS0O7IEST

45: 8B4424 30
8320 00

33CO

C3

mov rax,qword ptr ss:[rsp+30]
and dword ptr ds:[rax],0

XOr eax,eax

ret

5. Thereplacement code for the AmsiScanString function is seen in the figure below.

DﬂﬂﬂﬂlﬁFBSﬂBﬂﬂﬂl

[T
i m

mov eax,dword ptr ss:[rsp+23]
and dword ptr ds:[rax],0

XOF £4ax,eax

ret

6. The full source code for these techniques can be found at the link below.

https://github.com/TheWover/donut/blob/dafeal702ce2e71d5139c4d583627f7ee740f3ae/loader,

bypass.c#L158

Disabling WLDP

The same techniques described above are also used against widp.WIdpQueryDynamicCodeTrust and
wldp.WIldplsClassinApprovedList as seen in the figures below.

DDUD?FFF21A31EBD 33C0 HOF 2ax,eax wWildpQueryDynamicCodeTrust
7FF _-_—J;_:' C3 r'et
DDDD?FFF21A3143G 41:C700 01000000 mov dword ptr ds:[r8],1 wldpIsCclassInApprovedList
F21A31437 33C0 Xor eax,eax
""'2'2._::::_-J;—‘J3 L& ret

Loading/Executing .NET Assembly Backdoor

The backdoor payload, ljIClient, is loaded and executed using a combination of the previously resolved
Windows APIs. The full source code for this technique can be found at the links below.

https://github.com/TheWover/donut/blob/dafeal702ce2e71d5139c4d583627{7ee740f3ae/loader/inmem

dotnet.c

https://github.com/TheWover/donut/blob/dafeal702ce2e71d5139c4d583627{7ee740f3ae/loader/inmem

dotnet.c#1151

https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/bypass.c#L158
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/bypass.c#L158
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c#L151
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c#L151

ljl Backdoor

Summary

This is the main payload and has capabilities including but not limited to:

e Reverse proxy

e Query whether the victim is active oridle

e EXxfiltrate files/directories

e Download/decrypt/load any .NET assembly as a plugin via Assembly.Load and
Assembly.Createlnstance

e (Getuseraccounts

e Get the foreground window and window text

e CpuName, GpuName, Hardwareld, BiosManufacturer, MainboardName, TotalPhysicalMemory,
LanlpAddress, MacAddress, host, ip, rdns, asn, isp, country_name, country_code, region_name,
region_code, city, postal_code, continet_name, continet_code, latitude, longitude, metro_code,
timezone, datetime

Analysis

Following the OnLoad entrypoint, the configuration for the backdoor is decrypted and a new mutex is
created. This is done for the purpose of ensuring the backdoor isn't already running.

Initialize ljiclient

The encrypted configuration can be seen in the following figure:

Tag: IP-Connection
Version: 1.0.0.3

-28.1% 3
:1404:2a 3d6a-4f8f- aSDO 04f04d20b053
ignature: KnxaQIex5KzZg9ATvf/bn0Y0TXnEbslGplkQPezyDXMiachhGNL jbukBchyI j
1°TN3r-rk0Ek 5Qkxh1BzhmE ch1k hAerp\uA1qusn°1N3uLDTy1kszM51
b Gx 3 jOOVNbegbg8iF Ty0phmFzULKC1HXMEVhxC 6033
’aTcrAOpqwoxdzpzbyWW\buaKq1Wemk1+eqwbHQIT”hoqk\ZZTqCPTRheDAOmIKcTEXSkt ’fZWJhrHef1f
cYPKOPZ/+LvMBzghkoIYdLRhIv9eibpnC5ckUCX+uwTXTTUCRXS+0psgrsl2sx5yYbykdL 2TL +57ELQIMWT, g
ch4uijRtllocchIwﬁejRﬁrthEjhrOS leET 83NYjok1sired8wYwfvup3gINuVRcaTZ0ygQ2 fDVACFi9B7 TcWPXEnjed44Cl
8pv 1 GOwOBAQOF ADAYMR YWF A QDDAlsamwgU2VydmVyIENBMCAXDTIyMDIyNTAOMTQIMF oY
Dzk50Tk\M]M\M]MlOTHSW]A\MR\wFA\D QDDAlsaquHE' dm yIENEMIICIjANquqthh]WOEAQEFAAOCAq AMITICCgKCAQEAVCEYITB7 DEAWIC tKudNL
Xvb/zoZpEOAXREzf0Osa9w SURdWTidNp6jnJquucWbINdBiKbxEcbDQ6QdINWNnarXX63KK+7 /7 cSIUMLHEUXxXEhgr705bBrIBQ7LEaxfidImmCsjizD/L
OherEOmkserruFQy gK x+qZPR1apochsa2r q4Qc2PHTYKQ/ oqMbBwxmV Ca2sATmCGrn87ReaM3f1SHEhE4
9 zIdjsGUITUCAmYZzut00n /Wyym2txqjI¥1sVWNIwv49TuBzo590UZ
wdEnerF 0ww+m110c1wHk2n"Hym1bZINoLPﬂjdL’Lb S0qHyFODsDF931Ts fus9u+SCB6HSMvp
HYKae /1qzQL DS8mhxUgBdwWsf5r7 tKq3t+RKLcCI1BwWOp61ZBwceRVP19T/0BUZOZVoIyM1yOEUTOM233S g
'XEAEEyseZEwseMaaDHP3p151FD\\15Hkh1adz1ECAwEAAaMyMDAwHQYD\RDOEBVEFN’1SXthbc\QLthxnflwuLtecMaMA

eaxSchﬂDDbyOsUUhZ+s E

r83du9aqlohvz6wWE3pF91G/

Izhdehwayutho]HuhdkCWRSo24tEnTzqheFPDHAqu+FE+f qHClPEZIj4+AZbEkusyQMWOpnynZIHGE\oCMZ¥rkZMytdeanQThw IrooSLRrqr
Z3+rCoydviwwpwi leHrwWZdE /L93nxqz7 ySQywLdPf jop 58HZu8TXD pNQKGrHDZZDanCE5Dle+slezw0h0Pq+H1"mquLFRh+h+POHqu0h Vint+Nz4
EEEWOA&'q\l’uquRaENqMH0a35H+zoL103 azhK3wudRssgMvy]jt6Qtoh8BfP5pdwlYEW8152SmS6q3whyDpI3j4H,/5DHATjR1gkRAZ4CrNwB801inD4VwGe
+KkbLE XV

The backdoor instantiates the main class, ljiIClient, which then connects to the C2, sending the following
attributes:

Payload version
Encryption key
Server signature
Tag

Victim information:

Operating system
User account type
Country
Hardware id
Username

PC name

Lan IP address

B
(=

geoInformation.

userAccount.

Upon communication with C2, any arbitrary .NET plugin is decrypted and executed:

Assembly assembly = Assetrly.Luad(heu Aes256(this. \wa38a\ud312. settings. ENCRYPTIONKEY) .Decrypt(\uwae2e.bt));
(\ueaia. 1= LS \ueaze. . 1= 8}

» BindingFlags.

Finally, two new threads are started to notify the C2 if the victim is active or not and to continue connection
to C2.

The Donut shellcode is used once again for loading a .NET assembly, which we have found to be a

watchdog, which is used for the purpose of ensuring persistence of the backdoor. The Watchdog contains
the following functionality:

1. Creates a mutexto ensure itis only running once at one time.
2. Checks to ensure communications with the previously mentioned C2 are active via
GetExtendedTcpTable.

3. |Ifthey are, the program sleeps and continues checking.
4. Ifthey are not, the program will check to ensure the wsesves service is installed, and if so, start it.

sender, 13

[] table =

‘table[num].

(arrayz[e]). JTostring() + ":" + arrayz[1];

nums-+;

(1 flag)

» ipversion, -TcpTableCl:

(intPtr, ch, , ipversion, .TcpTableClass. 5 BU)

- mibTcptableownerPid = (4 - (intPtr,
intPtr2 = (3L yintPtr +)] 3 .

[mibTcptableownerpi
Y(JmibTcptableownerprid. dwiumEntries
mibTcprowownerPid = (4) . (intPtrz2,

] = mibTcprowownerPid;
I JintPtrz + (i - (mibTcprowownereid)) ;

{imtPtr);

The following figure is the configuration for DogCheck; note the same Command and Control servers are
used as the ljl Backdoor, which we decrypted earlier.

DoCheck

Conclusion

In this post we explored the inner-workings of a potentially never-before-seen backdoor, deployed
post-exploitation of a Confluence Server / Data Center vulnerability. It is our hope that this post informed
you of attack techniques and procedures to be on the lookout for.

Observables

Note:

Observables are properties (such as an IP address, MD5 hash, or the value of a registry key) or
measurable events (such as the creation of a registry key or a user) and are not indicators of compromise.
The observables listed below are intended to provide contextual information only. Deepwatch evaluates
the observables and applies those it deems appropriate to our detections.

Observing sets of these properties (observables) could be an indicator of compromise. For instance,

observing an IP address, creation of a user with admin privileges and a registry key could be indicators of
compromise and should be investigated further.

MITRE ATT&CK

ID Description

T1190 Exploit Public-Facing Application

T1543.003 Create or Modify System Process: Windows Service
T1622 Debugger Evasion

T1562 Impair Defenses

T1036 Masquerading

T1083 File and Directory Discovery

T1033 System Owner/User Discovery

T1041 Exfiltration Over C2 Channel

T1592 Gather Victim Host Information

T1059.001 Command and Scripting Interpreter: PowerShell

T1059.003

T1112

T1027.002

T1055.002

T1497.001

T1614

Observables

Command and Scripting Interpreter: Windows Command Shell

Modify Registry

Obfuscated Files or Information: Software Packing

Process Injection: Portable Executable Injection

Virtualization/Sandbox Evasion: System Checks

System Location Discovery

Description Value

Command and Control 209.58.191.235

Command and Control kf2y3o0.com

wab.exe 112d5f4755154d7blac6f5c0c84a2b0dfb053bd6c308e23dfd96b92
06f105e40

wab32.dll f2dfe17f992072266ac57835432b56834657ea0e75eb42fb9a034b3
eb17f3e25

wab32res.dll 2e28e43b7d3b9h91d12ae9687d9408c4173a87029ab9c81fe15987

533¢3490c2

