

Category: Incident Intel Reports

Headline: Part 2 ljl Backdoor Technical Analysis: Threat Actor Leverages Confluence
Vulnerability to Deploy Novel Backdoor

Author: @r1n9w0rm

Overview

Deepwatch has observed threat actors exploiting out-of-date versions of Atlassian Confluence Server and
Data Center, leading to the execution of arbitrary code. In this post, we provide the technical details of a
never-before-seen backdoor that was identified by a Deepwatch MDR Threat Hunter and dubbed “ljl
Backdoor”.

Vulnerability Details

As detailed in Part 1 of this report, the suspected vulnerability used in this attack was CVE-2022-26134,
which a�ects out-of-date versions of Confluence Server and Data Center, and allows remote code
execution (RCE) under the privileges of the user running the service.

A�ected Products

For all a�ected versions and products, see the security advisory published by Atlassian at:
https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

Technical Analysis

In this post, we will go over the technical analysis of a backdoor we identified post-exploitation. We have
dubbed it “ljl Backdoor”, as we suspect it is never-before-seen and includes capabilities such as:

● Reverse proxy
● Query whether the victim is active or idle
● Exfiltrate files/directories
● Load arbitrary and remotely downloaded .NET assemblies as “plugins”
● Get user accounts
● Get the foreground window and window text
● Get victim system information, such as: cpu name, gpu name, hardware id, bios manufacturer,

mainboard name, total physical memory, LAN IP address, and mac address
● Get victim geographic information, such as: asn, isp, country name, country code, region name,

region code, city, postal code, continent name, continent code, latitude, longitude, metro_code,
timezone, and datetime

https://twitter.com/r1n9w0rm
https://confluence.atlassian.com/doc/confluence-security-advisory-2022-06-02-1130377146.html

Loader

The loader is composed of three binaries: wab.exe, wab32.dll, and wab32res.dll. All files are installed in the
hard-coded path C:\Program Files\Common Files\Securitys.

1. wab.exe: Runs as a Windows Service named wscsvcs to masquerade as the legitimate
Windows service wscsvc and loads wab32.dll. This file was packed with .NET Reactor.

2. wab32.dll: Loads/executes wab32res.dll
3. wab32res.dll: Loads backdoor/watchdog.

The following behavior is exhibited by the Loader:

1. Ensures Windows Defender is completely disabled, both via registry keys and via PowerShell
commands:

● HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Defender\Features

TamperProtection = 0

● HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender\Real-Time
Protection

DisableBehaviorMonitoring = 1

DisableOnAccessProtection = 1

DisableScanOnRealtimeEnable = 1

● "powershell" Get-MpPreference -verbose
● "powershell" Set-MpPreference -DisableArchiveScanning $true
● "powershell" Set-MpPreference -DisableBlockAtFirstSeen $true
● "powershell" Set-MpPreference -DisableIOAVProtection $true
● "powershell" Set-MpPreference -DisablePrivacyMode $true
● "powershell" Set-MpPreference -DisableRealtimeMonitoring $true
● “powershell" Set-MpPreference -DisableScriptScanning $true
● "powershell" Set-MpPreference -HighThreatDefaultAction 6 -Force
● "powershell" Set-MpPreference -LowThreatDefaultAction 6
● "powershell" Set-MpPreference -ModerateThreatDefaultAction 6
● "powershell" Set-MpPreference -SevereThreatDefaultAction 6
● "powershell" Set-MpPreference -SignatureDisableUpdateOnStartupWithoutEngine $true
● "powershell" Set-MpPreference -SubmitSamplesConsent 2
● "powershell" Add-MpPreference -ExclusionPath

'C:\Windows\Microsoft.NET\Framework64\v4.0.30319\WPF\'
● "powershell" Add-MpPreference -ExclusionPath 'C:\Program Files\Common

Files\Securitys'
● "powershell" Add-MpPreference -ExclusionPath

'C:\Windows\Microsoft.NET\Framework\v4.0.30319\WPF\’

2. Detects the presence of a debugger to hinder malware analysts:

3. Starts iexplore.exe for the purpose of writing/executing shellcode that loads the LjlClient payload:
a. Calls CreateProcessW to start iexplore with command line: "C:\Program Files\Internet

Explorer\iexplore.exe" -nohome
b. Calls VirtualAllocEx to allocate RWE memory in the virtual address space of the previously

started iexplore process.
c. Decrypts shellcode and calls WriteProcessMemory to write the shellcode to the previously

allocated memory.
d. Calls CreateRemoteThread to execute the shellcode.

4. Starts msiexec.exe for the purpose of writing/executing shellcode that loads Watchdog payload:
a. Calls CreateProcessW to start iexplore with command line:

"C:\Windows\System32\msiexec.exe" /qn /quiet
b. Calls VirtualAllocEx to allocate RWE memory in the virtual address space of the previously

started msiexec process.
c. Decrypts shellcode and calls WriteProcessMemory to write the shellcode to the previously

allocated memory.
d. Calls CreateRemoteThread to execute the shellcode.

Shellcode

The shellcode used within the loader was generated by the threat actor using the open source tool Donut.
According to the authors of this project, “Donut is a position-independent code that enables in-memory
execution of VBScript, JScript, EXE, DLL files and dotNET assemblies.” In this case, it is used to execute
dotNET (.NET) assemblies. It was interesting to us, as it not only loads/executes the backdoor and
watchdog, but also attempts to thwart AV/EDR by patching functions exported by the AMSI (Anti-malware
Scan Interface) and WLDP (Windows Secure Mode Policy) libraries.

Dynamically Resolved Imports

The shellcode dynamically resolves the following exports.

● kernel32.dll
○ GetProcAddress, GetModuleHandleA, VirtualAlloc, VirtualFree, VirtualQuery,

VirtualProtect, Sleep, MultiByteToWideChar, GetUserDefaultLCID
● oleaut32.dll

○ SafeArrayCreate, SafeArrayCreateVector, SafeArrayPutElement, SafeArrayDestroy,

https://github.com/TheWover/donut

SafeArrayGetLBound, SafeArrayGetUBound, SysAllocString, SysFreeString
● wininit.dll

○ InternetCrackUrlA, InternetOpenA, InternetConnectA, InternetSetOptionA,
InternetReadFile, InternetCloseHandle, HttpOpenRequestA, HttpSendRequestA,
HttpQueryInfoA

● mscoree.dll
○ CorBindToRuntime, CLRCreateInstance

● combase.dll
○ CoInitializeEx, CoCreateInstance, CoUninitialize

Disabling AMSI

1. First the Windows API LoadLibraryA("AMSI") is called to acquire a handle to amsi.dll.
2. If this is successful, the handle is then used with the Windows API GetProcAddress, e.g.

GetProcAddress(hAMSI, "AmsiScanBu�er") to acquire the address of the function.
3. The Windows API VirtualProtect is called to make the memory of the address to AmsiScanBu�er

PAGE_EXECUTE_READWRITE.

4. The replacement code for the AmsiScanBu�er function is seen in the figure below.

5. The replacement code for the AmsiScanString function is seen in the figure below.

6. The full source code for these techniques can be found at the link below.

https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/
bypass.c#L158

Disabling WLDP

The same techniques described above are also used against wldp.WldpQueryDynamicCodeTrust and
wldp.WldpIsClassInApprovedList as seen in the figures below.

Loading/Executing .NET Assembly Backdoor

The backdoor payload, ljlClient, is loaded and executed using a combination of the previously resolved
Windows APIs. The full source code for this technique can be found at the links below.

https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_
dotnet.c

https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_
dotnet.c#L151

https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/bypass.c#L158
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/bypass.c#L158
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c#L151
https://github.com/TheWover/donut/blob/dafea1702ce2e71d5139c4d583627f7ee740f3ae/loader/inmem_dotnet.c#L151

ljl Backdoor

Summary

This is the main payload and has capabilities including but not limited to:

● Reverse proxy
● Query whether the victim is active or idle
● Exfiltrate files/directories
● Download/decrypt/load any .NET assembly as a plugin via Assembly.Load and

Assembly.CreateInstance
● Get user accounts
● Get the foreground window and window text
● CpuName, GpuName, HardwareId, BiosManufacturer, MainboardName, TotalPhysicalMemory,

LanIpAddress, MacAddress, host, ip, rdns, asn, isp, country_name, country_code, region_name,
region_code, city, postal_code, continet_name, continet_code, latitude, longitude, metro_code,
timezone, datetime

Analysis

Following the OnLoad entrypoint, the configuration for the backdoor is decrypted and a new mutex is
created. This is done for the purpose of ensuring the backdoor isn't already running.

The encrypted configuration can be seen in the following figure:

Once the configuration is decrypted, we can see all of the backdoor’s configuration information:

The backdoor instantiates the main class, ljlClient, which then connects to the C2, sending the following
attributes:

● Payload version
● Encryption key
● Server signature
● Tag

Victim information:

● Operating system
● User account type
● Country
● Hardware id
● Username
● PC name
● Lan IP address

Upon communication with C2, any arbitrary .NET plugin is decrypted and executed:

Finally, two new threads are started to notify the C2 if the victim is active or not and to continue connection
to C2.

Dogcheck (Watchdog)

The Donut shellcode is used once again for loading a .NET assembly, which we have found to be a
watchdog, which is used for the purpose of ensuring persistence of the backdoor. The Watchdog contains
the following functionality:

1. Creates a mutex to ensure it is only running once at one time.
2. Checks to ensure communications with the previously mentioned C2 are active via

GetExtendedTcpTable.
3. If they are, the program sleeps and continues checking.
4. If they are not, the program will check to ensure the wscsvcs service is installed, and if so, start it.

The following figure is the configuration for DogCheck; note the same Command and Control servers are
used as the ljl Backdoor, which we decrypted earlier.

Conclusion

In this post we explored the inner-workings of a potentially never-before-seen backdoor, deployed
post-exploitation of a Confluence Server / Data Center vulnerability. It is our hope that this post informed
you of attack techniques and procedures to be on the lookout for.

Observables

Note:
Observables are properties (such as an IP address, MD5 hash, or the value of a registry key) or
measurable events (such as the creation of a registry key or a user) and are not indicators of compromise.
The observables listed below are intended to provide contextual information only. Deepwatch evaluates
the observables and applies those it deems appropriate to our detections.

Observing sets of these properties (observables) could be an indicator of compromise. For instance,
observing an IP address, creation of a user with admin privileges and a registry key could be indicators of
compromise and should be investigated further.

MITRE ATT&CK

ID Description

T1190 Exploit Public-Facing Application

T1543.003 Create or Modify System Process: Windows Service

T1622 Debugger Evasion

T1562 Impair Defenses

T1036 Masquerading

T1083 File and Directory Discovery

T1033 System Owner/User Discovery

T1041 Exfiltration Over C2 Channel

T1592 Gather Victim Host Information

T1059.001 Command and Scripting Interpreter: PowerShell

T1059.003 Command and Scripting Interpreter: Windows Command Shell

T1112 Modify Registry

T1027.002 Obfuscated Files or Information: Software Packing

T1055.002 Process Injection: Portable Executable Injection

T1497.001 Virtualization/Sandbox Evasion: System Checks

T1614 System Location Discovery

Observables

Description Value

Command and Control 209.58.191.235

Command and Control kf2y3o.com

wab.exe 112d5f4755154d7b1ac6f5c0c84a2b0dfb053bd6c308e23dfd96b92
06f105e40

wab32.dll f2dfe17f992072266ac57835432b56834657ea0e75eb42fb9a034b3
e517f3e25

wab32res.dll 2e28e43b7d3b9b91d12ae9687d9408c4173a87029ab9c81fe15987
533c3490c2

